Research on rotor fault diagnosis technology of three-phase asynchronous motor based on NA-MEMD mutual information and SVM

Author:

Ali Hui12,Jie Yu1ORCID,Weiqiang Lu34

Affiliation:

1. College of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an, China

2. Xi’an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi’an, China

3. CCTEG Changzhou Research Institute, Changzhou, China

4. Tiandi(Changzhou) Automation Co., Ltd., Changzhou, China

Abstract

Aiming at the problem of mode aliasing in the adaptive decomposition of nonlinear and non-stationary current signals generated by three-phase asynchronous motor faults, and the fault features contained in signals collected by a single sensor can not be accurately and comprehensively extracted and characterized when early rotor bar breakage and air gap eccentricity faults occur, A fault diagnosis method for three-phase asynchronous motor based on noise assisted multivariate empirical mode decomposition (NA-MEMD) and mutual information is proposed. Firstly, the NA-MEMD algorithm is used to decompose the three-phase stator current signal of the asynchronous motor to obtain multi-scale intrinsic mode functions (IMFs). Then, the correlation algorithm is used to screen the IMFs containing useful information. Then, the filtered IMF components are reconstructed into new signals and their features are extracted, Finally, support vector machines (SVM) are used to identify the rotor broken bars and air gap eccentric faults of the three-phase asynchronous motor. The experimental results show that the NA-MEMD method has a higher recognition rate than the traditional empirical mode decomposition (EMD) and the ensemble empirical mode decomposition (EEMD) methods.

Funder

天地科技股份有限公司科技创新创业资金专项资助项目

Publisher

SAGE Publications

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3