A learning-based optimal tracking controller for continuous linear systems with unknown dynamics: Theory and case study

Author:

Zhang Jingren1,Wang Qingfeng1,Wang Tao2ORCID

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou, China

2. Ocean College, Zhejiang University, Hangzhou, China

Abstract

In this article, a novel continuous-time optimal tracking controller is proposed for the single-input-single-output linear system with completely unknown dynamics. Unlike those existing solutions to the optimal tracking control problem, the proposed controller introduces an integral compensation to reduce the steady-state error and regulates the feedforward part simultaneously with the feedback part. An augmented system composed of the integral compensation, error dynamics, and desired trajectory is established to formulate the optimal tracking control problem. The input energy and tracking error of the optimal controller are minimized according to the objective function in the infinite horizon. With the application of reinforcement learning techniques, the proposed controller does not require any prior knowledge of the system drift or input dynamics. The integral reinforcement learning method is employed to approximate the Q-function and update the critic network on-line. And the actor network is updated with the deterministic learning method. The Lyapunov stability is proved under the persistence of excitation condition. A case study on a hydraulic loading system has shown the effectiveness of the proposed controller by simulation and experiment.

Funder

National Natural Science Foundation of China

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3