Affiliation:
1. School of Network and Communication Engineering, Jinling Institute of Technology, Nanjing City, Jiangsu Province, People’s Republic of China
Abstract
Aiming at researching on health monitoring of composite materials, a static load position identification method for optical-fiber composite structures based on the Particle Swarm Optimization-Back Propagation (PSO-BP) neural network algorithm is proposed. Based on the 2 × 2 optical fibers-composite structures, the PSO-BP algorithm is used to establish a nonlinear mapping between the fiber output intensity and the position. At first, a three-layer BP neural network is established. The number of the hidden layer is 30. And then the PSO algorithm is used to optimize the initial weights and thresholds of the BP neural network. Finally, a BP neural network is built using optimized initial weights and thresholds. A total of 515 sets of data samples are collected by the experimental system, of which 500 sets are used for training and 15 sets are used for the final model prediction. Simulation results show that the Mean Square Error (MSE) of the static load position prediction based on the PSO-BP algorithm is 0.0485. Compared with the position prediction model established by the BP neural network, Radial Basis Function (RBF) neural network and Support Vector Regression Machine (SVRM), the PSO-BP neural network model has a higher accuracy. The proposed method has an important application value for the research of health self-diagnosis of composite structures.
Funder
Ph.D. Project supported by the Jinling Institute of Technology
Natural science foundation youth project of Jiangsu Province
School-level research fund incubation project of Jinling Institute of Technology
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献