Author:
Miao Yu,Su Hongye,Gang Rong,Chu Jian
Abstract
Process data plays a vital role in industrial processes, which are the basis for process control, monitoring, optimization and business decision making. However, it is inevitable that process data measurements will be corrupted by random errors. Therefore, data reconciliation has been developed to improve accuracy of process data by reducing the effect of random errors. Unfortunately, reconciled values would be deteriorated by gross errors, which may be present during measurement. Therefore, gross error detection is necessary to guarantee the efficiency of data reconciliation, which has been developed to identify and eliminate gross errors in process data. In this paper, a review of data reconciliation and gross error detection and relevant industrial applications are presented. As the efficiency of data reconciliation and gross error detection largely depends upon the locations of sensors, sensor networks design is also included in the review. Meanwhile, some achievements of the authors are also included.
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献