Experimental study on erosion resistance evaluation of single-layer metal mesh screen

Author:

Wu Lijuan1,Ying Ruomeng1,Lou Yishan1,Shi Baocheng1ORCID,Zhang Xingkai1,Qiu Yijie1,Zhang Yindi1

Affiliation:

1. Yangtze University, Wuhan, China

Abstract

In order to predict the erosion life and erosion failure time of the metal mesh, based on the rotating erosion experiments under different working conditions, the erosion mass loss of the metal mesh under different factors was measured by the weight loss method and the erosion mathematical prediction model was put forward. The erosion wear mechanism of the single-layer metal mesh was explored by using electron microscope scanner and optical microscope. The results show that the erosion rate increases exponentially with the increase of liquid velocity (0.5, 1.0, 1.5, 2.0 m/s). When the solid mass fraction (0.3%, 0.5%, 0.8%) and erosion Angle is 15°–45°, the erosion rate is proportional to the solid mass fraction and erosion Angle. After erosion, the mesh samples suffered different degree of pitting corrosion, ploughing and cutting wear, and the mesh wear was local wear. Compared with the experimental value, the error of the erosion mathematical model is less than 20%, which has a certain reliability, and has an important reference significance for guiding the production control of sand oil Wells.

Funder

foundation for innovative research groups of the national natural science foundation of china

Educational Commission of Hubei Province of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Reference24 articles.

1. Dong C. Sand prevention technology for oil and gas wells. Beijing: SINOPEC Press, 2009, pp. 47–55.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3