Window length insensitive real-time EMG hand gesture classification using entropy calculated from globally parsed histograms

Author:

Algüner Ayber Eray1ORCID,Ergezer Halit1ORCID

Affiliation:

1. Department of Mechatronics Engineering, Cankaya University, Ankara, Turkey

Abstract

Electromyography (EMG) signal classification is vital to diagnose musculoskeletal abnormalities and control devices by motion intention detection. Machine learning assists both areas by classifying conditions or motion intentions. This paper proposes a novel window length insensitive EMG classification method utilizing the Entropy feature. The main goal of this study is to show that entropy can be used as the only feature for fast real-time classification of EMG signals of hand gestures. The main goal of this study is to show that entropy can be used as the only feature for fast real-time classification of EMG signals of hand gestures. Additionally, the entropy feature can classify feature vectors of different sliding window lengths without including them in the training data. Many kinds of entropy feature succeeded in electroencephalography (EEG) and electrocardiography (ECG) classification research. However, to the best of our knowledge, the Entropy Feature proposed by Shannon stays untested for EMG classification to this day. All the machine learning models are tested on datasets NinaPro DB5 and the newly collected SingleMyo. As an initial analysis to test the entropy feature, classic Machine Learning (ML) models are trained on the NinaPro DB5 dataset. This stage showed that except for the K Nearest Neighbor (kNN) with high inference time, Support Vector Machines (SVM) gave the best validation accuracy. Later, SVM models trained with feature vectors created by 1 s (200 samples) sliding windows are tested on feature vectors created by 250 ms (50 samples) to 1500 ms (300 samples) sliding windows. This experiment resulted in slight accuracy differences through changing window length, indicating that the Entropy feature is insensitive to this parameter. Lastly, Locally Parsed Histogram (LPH), typical in standard entropy functions, makes learning hard for ML methods. Globally Parsed Histogram (GPH) was proposed, and classification accuracy increased from 60.35% to 89.06% while window length insensitivity is preserved. This study shows that Shannon’s entropy is a compelling feature with low window length sensitivity for EMG hand gesture classification. The effect of the GPH approach against an easy-to-make mistake LPH is shown. A real-time classification algorithm for the entropy features is tested on the newly created SingleMyo dataset.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Reference46 articles.

1. Pattern recognition of multiple EMG signals applied to the description of human gait

2. Mayo Clinic. Test Procedures: Mayo Clinic, https://www.mayoclinic.org/tests-procedures/emg/about/pac-20393913#:∼:text=Electromyography%20(EMG)%20is%20a%20diagnostic,to-muscle%20signal%20transmission (accessed 12 June 2022).

3. EMPress

4. EMG-Centered Multisensory Based Technologies for Pattern Recognition in Rehabilitation: State of the Art and Challenges

5. Standards of instrumentation of EMG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3