Fractional-order neural control of a DFIG supplied by a two-level PWM inverter for dual-rotor wind turbine system

Author:

Benbouhenni Habib1ORCID,Colak Ilhami1,Bizon Nicu23,Abdelkarim Emad45

Affiliation:

1. Faculty of Engineering and Architecture, Department of Electrical & Electronics Engineering, Nisantasi University, Istanbul, Turkey

2. The National University of Science and Technology POLITEHNICA Bucharest, Piteàti University Center, Pitesti, Romania

3. ICSI Energy, National Research and Development Institute for Cryogenic and Isotopic Technologies, Romania

4. University of Electric Engineering Aswan, Aswan, Egypt

5. Department of Electric Engineering Buraydah Private Colleges, Qassim, Kingdom of Saudi Arabia

Abstract

Energy ripples are among the common problems in renewable energies as a result of using less efficient strategies. In this work, a new technique is suggested to control a doubly-fed induction generator (DFIG) using the pulse width modulation (PWM). The new technique is based on the combination of neural networks and fractional-order control to minimize the reactive and active power ripples of the DFIG-based variable speed dual-rotor wind turbine system. The suggested fractional-order neural control (FONC) with the PWM is a simple, robust and a high-performance strategy. Simulation is performed using Matlab software to validate the effectiveness of the designed control of 1.5 MW DFIG and the obtained results are compared with the traditional direct power control (DPC) in different working conditions. In addition, the comparison between the suggested control and the DPC is performed in the cases of changing or not changing the device parameters in terms of ripple ratio, dynamic response, steady-state error, current quality, and overshoot of active and reactive power of the DFIG. As compared to the DPC, the proposed FONC technique improves the active and reactive power ripples by 65.71% and 84.74%, respectively. Also, improves the overshoot of the active and reactive power by 71.33% and 91.72%, respectively. The simulation results demonstrate the high performance and robustness of the FONC technique for the parametric variations of the DFIG-based variable speed dual-rotor wind turbine system compared to the DPC control.

Funder

Emad Abdelkarim

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3