Augmented system model-based online collaborative determination of lead–acid battery states for energy management of vehicles

Author:

Wang Yuefei1ORCID,Huang Fei1,Pan Bin1,Li Yang1,Liu Baijun1

Affiliation:

1. Hefei University of Technology, Hefei, China

Abstract

State of charge (SOC) and state of health (SOH) of batteries are the indispensable control decision variables for online energy management system (EMS) in modern internal combustion engine vehicles. The real-time and accurate determination of SOC and SOH is essential to the reliability and safety of EMS operation. Obtaining good accuracy for the SOC estimation is difficult without considering SOH because of their coupling relationship. Although several works on the joint estimation of SOC and SOH of lithium–ion batteries are available, these studies cannot be applied to lead–acid batteries because of the differences in physical structure and characteristics. This study handles the problem of modeling the relationship between SOC and SOH of lead–acid battery and their online collaborative estimation. First, the structure and control strategy of a bus-based EMS is discussed, and the improper energy control actions of EMS due to the inaccurate SOC estimation are analyzed. Second, an instantaneous correlation factor β for SOC and SOH is defined as a new state estimating variable, and the simplified linear relationship model between β and open circuit voltage is established through the battery experiments. Third, a discretized augmented system equation of β is deduced according to the relationship model and the Randles circuit model. The least square circuit parameter identification (LSCPI) algorithm is presented to identify the time-varying circuit model parameters, while the adaptive Kalman filter for augmented system (AKFAS) algorithm is employed to estimate β online. A collaborative estimation algorithm is proposed on the basis of the LSCPI and AKFAS to determine SOC and SOH of lead–acid battery in real time, and a demo intelligent battery sensor is developed for its implementation. The results of battery charging and discharging experiments indicate that the proposed method has high accuracy. The estimation accuracy of SOC of this method reaches 3.13%, which is 7% higher than that of the existing method.

Funder

natural science foundation of anhui province

jiangsu university of technology

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3