Gearbox fault diagnosis method based on improved semi-supervised MTDL and GAF

Author:

Zhao Peng1ORCID,Pang Xinyu1,Li Feng2ORCID,Lu Kaibo1,Hu Shouxin3

Affiliation:

1. School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China

2. School of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan, Shanxi, China

3. CCTEG Taiyuan Research Institute Co. Ltd, Taiyuan, China

Abstract

Aiming at the problem that it takes a long time and high cost to obtain complete labeled data under intelligent fault diagnosis and unlabeled data is not used. This paper proposes an improved semi-supervised mean teacher deep learning (MTDL) and Gramian angle field (GAF) fusion diagnostic method. This method fully utilizes a small number of labeled samples and a large number of unlabeled samples to deeply mine invisible fault features and potential physical correlations. At the same time, it solves the problem of losing the inter-data correlation structure when one-dimensional time series signals are used as inputs for neural networks. The GAF-MTDL method uses consistency regularization and modifies the network structure in the mean teacher algorithm into a semi-supervised deep learning model enhanced by WideResNet. The experimental results show that the proposed GAF-MTDL method saves a lot of manual labeling costs, improves the recognition accuracy and generalization ability, and can achieve excellent prediction accuracy with very little labeled data. In the end, the accuracy of planetary gear fault identification reached 98.22% under the labeling rate of 20%, and the accuracy of fault identification reached 99.98% through the verification of the bearing data set of Case Western Reserve University. The value of this research is to bring an efficient and low-cost technology to the field of industrial intelligent fault diagnosis, which can significantly improve the accuracy of fault identification.

Funder

National Natural Science Foundation of China

Shanxi Provincial Key Research and Development Project

Applied Basic Research Project of Shanxi Province, China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3