Control strategy research of electric vehicle thermal management system based on MGA-SVR algorithm

Author:

Yan Wei1ORCID,Li Mei-Jing1,Mei Na1,Qu Chun-Yan1,Wang Yuan2,Liu Li-Ping1

Affiliation:

1. School of Energy and Power Engineering, Shandong University, Jinan, China

2. CATARC (Tianjin) Automotive Engineering Research Institute Co., Ltd., Tianjin, China

Abstract

The thermal management system is one of the important assemblies that ensure the secure operation of electric vehicles (EVs). Using intelligent algorithms to optimize the control strategy of the thermal management system can reduce energy consumption under the premise of effective heat dissipation of EVs. This paper attempts to construct the control strategy of EV thermal management system by coupling the modified genetic algorithm (MGA) and support vector regression (SVR). Firstly, the double-population adaptive mutation method and a novel optimization process are adopted to obtain MGA. Afterward, the performance of MGA is verified by four benchmark functions compared with three typical algorithms, which are genetic algorithm (GA), double-population genetic algorithm (DPGA), and quantum genetic algorithm (QGA). The results demonstrate that the accuracy and stability of MGA are obviously better than the other three algorithms. Secondly, MGA is applied to modify parameters of SVR kernel function, and the accuracy of MGA-SVR algorithm is verified by the Auto-MPG and Computer Hardware data sets. The mean square deviations of the SVR algorithm test set are 0.0186 and 0.0806, respectively, and the mean square deviations of the MGA-SVR algorithm test set are 0.0099 and 0.0054, respectively, which fully shows that MGA-SVR have more accurate forecasting capabilities. Finally, the thermal management system model of EV is built by the one-dimensional simulation software KULI. Under the Chinese working condition, fan speed which meets the cooling requirements of the motor and controller is obtained from the KULI model, and the database is constructed. Then, MGA-SVR is trained by database and employed to predict fan speed under the Chinese working condition and obtain control strategy of the thermal management system. Compared with traditional control strategy, the thermal management system based on MGA-SVR control strategy can not only meet the radiating requirements, but also effectively reduce the power consumption of fans.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3