Noise reduction method of shearer’s cutting sound signal under strong background noise

Author:

Li ChangpengORCID,Peng Tianhao,Zhu Yanmin,Lu Shuqun1

Affiliation:

1. School of Mechanical Engineering, Anhui University of science and technology, Huainan, China

Abstract

In coal and rock recognition technology, the acquisition of sound signals is affected by background noise. It is challenging to extract cutting features and accurately identify cutting patterns effectively. Therefore, this paper proposes an approach for combined noise reduction of the cutting sound signal based on the improved adaptive noise complete ensemble empirical mode decomposition (ICEEMDAN) and a singular value decomposition (SVD). First, the method used the ICEEMDAN method to decompose the noisy signal into several intrinsic mode functions (IMF). It calculated the correlation coefficient between the IMF component and the noisy signal and then selected the noisy IMF components based on the threshold formula. Meanwhile, this method constructed a Hankel matrix of the noisy IMF component signals. It used SVD technology to obtain the singular values. According to the singular value standard energy spectrum curve, the paper determined the order of the effective singular value and removed the noise component in the signal. Then, the denoised IMF and noiseless IMF components are superimposed and reconstructed to obtain the noise-reduced cutting sound signal. Finally, it applied simulation signal and simulated shearer cutting experiment to verify the performance of the method. The results show that the proposed method can effectively remove the influence of background noise in the signal and retain the characteristic frequencies of the original cutting sound signal. Compared with traditional noise reduction methods, the ICEEMDAN-SVD combined noise reduction method performs better in noise reduction evaluation standards of signal-noise ratio and root mean square error. It achieved a better noise reduction effect, which could help coal and rock recognition technology based on sound signals.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3