Numerical calculation and experimental study on response characteristics of pneumatic solenoid valves

Author:

Zhang Xiang1ORCID,Lu Yonghua1,Li Yang1,Zhang Chi1,Wang Rui1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

In order to analyze the response characteristics of the solenoid valve in depth, the flow field of the solenoid valve is analyzed by means of the computational fluid dynamics, and the aerodynamic parameters that are difficult to be obtained by the traditional methods are obtained with software FLUENT. We also set up the mathematical model of the solenoid valve, including the aerodynamic model, the circuit model, the magnetic circuit model and the mechanical motion model. The calculation is completed in the Simulink, and the results of the calculation are analyzed. A set of the solenoid valve response characteristic test system is built, and the response characteristic parameters such as response time and maximum action frequency of the solenoid valve are tested. The experimental results are verified by comparing them with the simulation results. The final result shows that the response characteristics are basically irrelevant to the action frequency at a suitable working frequency. The open switching time of the solenoid valve decreases with the increase in the inlet pressure and the driving voltage and increases with the increase in the number of coil turns. The close switching time increases with the increase in the inlet pressure, the driving voltage and the number of coil turns.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3