YOLO based deep learning on needle-type dashboard recognition for autopilot maneuvering system

Author:

Chang Chia-Ming1,Liou Yuan-Dean1,Huang Yi-Cheng2ORCID,Shen Shang-En1,Yu PeiJou1,Chuang TingHsueh1,Chiou Shean-Juinn2

Affiliation:

1. Department of Mechatronics Engineering, National Changhua University of Education, Changhua

2. Department of Mechanical Engineering, National Chung Hsing University, Taichung

Abstract

Developing a fully automatic auxiliary flying system with robot maneuvering is feasible. This study develops a control vision system that can read all kind of needle-type meters. The vision device in this study implements a modified YOLO-based object detection model to recognize the airspeed readings from the needle-type dashboard. With this approach, meter information in the cockpit is replaced by a single camera and a powerful edge-computer for future autopilot maneuvering purpose. A modified YOLOv4-tiny model by adding the Spatial Pyramid Pooling (SPP) and the Bidirectional Feature Pyramid Network (BAFPN) to the Neck region of the convolutional neural networks (CNN) structure is implemented. The Taguchi method for acquiring a set of optimum hyperparameters for the CNN is applied. An improved deep learning network with higher Mean Average precision (mAP) compared with conventional YOLOv4-tiny and possessing a higher Frames Per Second (FPS) value than YOLOv4 is deployed successfully. Established a self-control system using a camera to receive airspeed indications from the designed virtual needle-type dashboard. Moreover, the dashboard’s pointer is controlled by applying the proposed control method, which contains PID control in addition to the pointer’s rotation angle recognition. A modified YOLOv4-tiny model with a fabricated system for visual dynamical recognition control is implemented successfully. The feasibility of bettering mean accuracy precision and frame per second in achieving autopilot maneuvering is verified.

Funder

ministry of science and technology

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3