Effect of the load pad size on the output of the column-type force transducer

Author:

Liang Wei1ORCID,Yang Xiao-xiang1,Yao Jin-hui2

Affiliation:

1. Institute of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China

2. Department of Force Measurement, Fujian Institute of Metrology, Fuzhou, China

Abstract

The size of the load pad had a significant effect on the output of the column-type force transducer. It was important to eliminate the influence when the transducer was loaded in a force transducer build-up system which worked as the primary force transfer standard. A common model of the output about the column-type force transducer affected by the shape of load pad was analysed. Seven load pads with various dimensions were designed and fixed on a 300-kN force transducer to investigate the influence of the dimension on the indication error of the transducer. The results showed that the load pad of the sphere–plane contact design would cause the smallest indication error but the largest contact stress. It was better to use the load pad of the sphere–sphere contact design with the spherical radius ratio of ball to cup equalled to 0.2. The spherical radius of the ball should be small under the permission of material strength. In addition, it was important to enhance the stiffness of the build-up system to eliminate the effect of the load pad size on the indication error of the transducer.

Funder

the Chinese major national scientific instrument and equipment development projects

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the sensitivity of a strain gauge force sensor to bending moment;XLIII ACADEMIC SPACE CONFERENCE: dedicated to the memory of academician S.P. Korolev and other outstanding Russian scientists – Pioneers of space exploration;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3