Improved mesoscopic meteorological modeling of the urban climate for building physics applications

Author:

Strebel Dominik1ORCID,Derome Dominique2,Kubilay Aytaç1ORCID,Carmeliet Jan1

Affiliation:

1. Chair of Building Physics, Swiss Federal Institute of Technology ETH, Zurich, Switzerland

2. Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada

Abstract

Meteorological mesoscale models with different urban parametrization are used to predict the local urban climate at 250 m resolution. The authors propose a hybrid machine learning approach to improve the mesoscale prediction accuracy using measured air temperature data from a sensor network and remove simulation bias. The simulation of the urban climate of Zurich during a hot summer is used as case study showing the improvements of the simulation accuracy. Based on the hybrid model results, a cumulative heat exposure index is proposed to map local hotspots in the city and assess the difference of cooling loads between rural and urban environments. Furthermore, intra-urban microclimatic differences of a typical mid-latitude city are explored to highlight the benefits of detailed simulations for building physics purposes.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3