Analysis of condensation and ventilation phenomena for double skin façade units

Author:

Squadroni Francesco12ORCID,De Michele Giuseppe3,Mazzucchelli Enrico Sergio2ORCID,Demanega Ingrid3,Mangialardo Sara12,Avesani Stefano3

Affiliation:

1. Frener & Reifer Fassaden GmbH, Brixen/Bressanone, Italy

2. Department of Architecture, Built environment and Construction engineering, Politecnico di Milano, Milano, Italy

3. EURAC Research, Institute for Renewable Energy, Bozen/Bolzano, Italy

Abstract

This paper presents a study of the thermo-hygrometric behaviour of a Double Skin Façade (DSF) unit. The study aims (i) at comparing currently used calculation procedures according to European and American standards (UNI EN ISO 10077, UNI EN ISO 12631:2018, ISO 15099:2003, ANSI/NFRC 100 for the thermal performance and ISO 13788:2012 (2012) for the condensation risk), and (ii) at assessing the 2D hygrothermal performance of a double skin module through a Finite Element Method (FEM)-based model. According to the current standards, a detailed characterization of thermal and fluid dynamic phenomena in closed and ventilated cavities is neglected and a simplified approach is proposed, which tends to overestimate the overall U-value of the curtain wall (UCW) due to an incremental thermal resistance that depends on the thickness of the air gap layer and the level of ventilation. The potential risk of this simplification is that the DSF estimated design performance, whilst complying with regulatory requirements, present inconsistencies respect to the real behaviour, impacting energy, comfort, material degradation, etc. Accurate assessments could be done already during design through detailed FEM multi-physic analyses. Nevertheless, those require a specific knowledge, are cost and time-consuming. As a first step, this study focuses on comparing the normed calculation approach for the design, against a detailed FEM-based multi-physics methodology. Specifically, this couples CFD, hygrothermal and Ray Tracing physics in a tool for the calculation of thermal transmittance, g-value and relative humidity of a DSF with a customizable geometry. As a second step, given a real DSF unit that showed unforeseen phenomena of surface condensation inside the cavity during several hours in spring and autumn, the multi-physic tool has been used to evaluate the condensation risk with the current and modified DSF design, under static and time-dependent boundary conditions.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

Reference32 articles.

1. ANSI/NFRC 100-2020 – Procedure for Determining Fenestration Products U-Factor.

2. Double Skin Façade: The State of Art on Building Energy Efficiency

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Erratum;Journal of Building Physics;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3