The path to the high performance thermal building insulation materials and solutions of tomorrow

Author:

Jelle Bjørn Petter1,Gustavsen Arild2,Baetens Ruben3

Affiliation:

1. Department of Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim, Norway, Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway,

2. Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway

3. Department of Civil Engineering, Catholic University of Leuven (KUL), B-3001 Heverlee, Belgium

Abstract

In today’s society there is an increased focus on various energy aspects. Buildings constitute a large part of the total energy consumption in the world. In this respect it is important to have the optimum heat balance in buildings. That is, in a cold climate one wants to have as well thermally insulated building envelopes as possible. However, even in cold climates there might often be relatively long periods of overheating in the buildings, for example, due to solar heat gains and excessive heat loads from miscellaneous indoor activities. In warm climates overheating is most often the case, for example, in office work spaces with large window glass facades and extensive use of electrical equipment. Insulation retrofit is among the most cost-effective measures, even more cost-effective than, for example, solar photovoltaics. The traditional thermal insulation materials of today have typically thermal conductivities between 33 and 40 mW/(mK). State-of-the-art thermal insulation includes vacuum insulation panels (VIPs) with conductivities between 3 and 4 mW/(mK) in fresh condition to typically 8 mW/(mK) after 25 years aging due to water vapor and air diffusion into the VIP core material, which has an open pore structure. Puncturing the VIP envelope causes an increase in the thermal conductivity to about 20 mW/(mK). The main emphasis of this work centers around the possibilities of inventing and developing innovative and robust highly thermal insulating materials. That is, within this work the objective is to go beyond VIPs and other current state-of-the-art technologies. New concepts are introduced, that is, advanced insulation materials (AIMs) as vacuum insulation materials (VIMs), gas insulation materials (GIMs), nano insulation materials (NIMs), and dynamic insulation materials (DIMs). These materials may have closed pore structures (VIMs and GIMs) or either open or closed pore structures (NIMs). The DIMs aim at controlling the material insulation properties, that is, solid state thermal conductivity, emissivity, and pore gas content. Fundamental theoretical studies aimed at developing an understanding of the basics of thermal conductance in solid state matter at an elementary and atomic level have been addressed. The ultimate goal of these studies is to develop tailor-made novel high performance thermal insulation materials and dynamic insulation materials, the latter one enabling to control and regulate the thermal conductivity in the materials themselves, that is from highly insulating to highly conducting. Furthermore, requirements of the future high performance thermal insulation materials and solutions have been proposed. At the moment, the NIM solution seems to represent the best high performance low conductivity thermal solution for the foreseeable future. If robust and practical DIMs can be manufactured, they have great potential due to their thermal insulation regulating abilities.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3