Sensitivity analysis of the hygrothermal behaviour of homogeneous masonry constructions: Interior insulation, rainwater infiltration and hydrophobic treatment

Author:

Calle Klaas1ORCID,Van Den Bossche Nathan1ORCID

Affiliation:

1. Ghent University, Building Physics Group, Ghent, Belgium

Abstract

Historical masonry constructions are difficult to mimic in hygrothermal models. The material properties of the walls are often highly uncertain due to the natural origin of the aggregates and the various, manual production processes used through time. Therefore, sensitivity analyses based on probabilistic simulations are powerful tools to indicate the risks on damage in masonry constructions. Damage criteria for relevant pathologies such as frost damage, potential decay of wooden beam heads and mould growth at the interior surface are used. The assessment methods (Scatter plots, Classification trees and Sobol indices) are based on 1D Heat, Air and Moisture simulations, including realistic variations on climate parameters and wall properties. These methodologies are applied to probabilistic simulations in which a potential damage risk is expected in historic masonries. The application of interior insulation, the use of hydrophobic treatments, and the impact of potential water infiltrations through cracks are discussed. In most of these situations a high dependency of each of the damage criteria on the rain intensity, the trend of the moisture retention/liquid conductivity curve and the absorption coefficient is evident, but also additional insights are found. For example, the thermal impact of interior insulation is negligible compared to its reduction of the first phase drying potential towards the interior. For hydrophobic treatments, the risk for damage typically decreases, but in combination with a rain water infiltration rate above approximately 5% of the wind driven rain the risk on mould growth at the interior surface significantly increases.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3