Effect of Polymer Structure on the Long-Term Aging of Rigid Polyurethane Foam

Author:

Moore S. E.1

Affiliation:

1. The Dow Chemical Company

Abstract

The effect of polymer structure on both initial and aged thermal conductivity ( K-factor) or thermal resistivity ( R-value) was explored by using a new procedure to estimate the long-term thermal resistance of gas-filled cellular plastics proposed by Norton [1], Edgecombe [2] and Bomberg [3]. This method uses a semi-logarithmic plot of thermal resistivity versus time that produces two distinct stages in the data, thermal drift and plateau with a break point separating the two stages. The plateau stage was fit with a straight line in order to estimate the long-term thermal resistance or K-factor of the foam. This concept was employed on the fourteen CFC-11 blown foams [4] in this study. The effect of me two major types of isocyanates, Specialty TDI (toluene diisocyanate) and PMDI (polymeric diphenylmethane diisocyanate), was isolated and compared. The significance of seven different types of polyol initiators was also evaluated with respect to K-factor and K-factor aging. In the case of the PMDI foams, the data correlated well with the model and the 20-year K-factor predictions appear to be reasonable when compared to the raw data curves. In the case of the TDI foams, however, it was more difficult to find a break point which would define the plateau region in the data. Most of these foams did contain break points, but the break point occurs at a slightly longer time. The 20-year K-factors of these foams could be predicted with reasonable confidence when there was a break point in the resistivity versus log (T) curves.

Publisher

SAGE Publications

Subject

General Engineering

Reference7 articles.

1. Thermal Conductivity and Life of Polymer Foams

2. Progress in Evaluating Long-Term Thermal Resistance of Cellular Plastics

3. Scaling Factors in Aging of Gas-Filled Cellular Plastics

4. BoothL. D., LeeW. M. 1984. “Effects of Polymer Structure on K-Factor Aging of Rigid Polyurethane Foam,” Proceedings of the SPI–28th Annual Technical/Marketing Conference, p. 268.

5. Measurement of Aged Thermal Resistance of Rigid Gas-Filled Cellular Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3