Multivariate analysis for assessing the thermal performance of vertical opaque envelopes in extended regions

Author:

Thomas L. P.1ORCID,Marino B. M.1,Muñoz N.1

Affiliation:

1. Centro de Investigaciones en Física e Ingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina

Abstract

We introduce a statistical methodology to evaluate the thermal performance of vertical opaque envelopes and provide the most adequate design of energy-efficient buildings located across extended regions. The analytical procedure was applied to the extensive Argentinian territory with a variety of climates and a limited number of networked meteorological stations. Although the study was conducted over a full year, results are presented for January and June, when the building energy demand for heating and cooling is most significant, taking into account the local climate, the thermal properties of the walls and the effects of the daily variation in the solar radiation. By using the Fourier series expansion of the sol-air temperature and multivariate analysis, we first correlated the weather data and the steady-state and time-dependent heat fluxes transmitted by conduction through five types of typical walls facing north and south in 10 climatically differentiated cities where full weather data were recorded. Then, the mean values of the sol-air temperature and the amplitude of its time variations were interpolated throughout the territory, thus yielding the spatial distributions of these parameters for a typical day in the months of interest. Finally, the calculation of the heat fluxes exchanged through building opaque envelopes was extended to the whole country.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3