A hybrid analytical–numerical method for computing coupled temperature and moisture content fields in porous soils

Author:

Gasparin Suelen1,Chhay Marx2,Berger Julien1,Mendes Nathan1

Affiliation:

1. LST, Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, Curitiba, Brazil

2. CNRS, University of Savoie Mont Blanc–LOCIE, Le Bourget-du-Lac, France

Abstract

This work is devoted to proposing a hybrid numerical–analytical method to address the problem of heat and moisture transfer in porous soils. Several numerical and analytical models have been used to study heat and moisture transfer. The complexity of the coupled transfer in soils is such that analytical solutions exist only for limited problems, while numerical solutions can deal with more realistic ones but at a higher computational cost. Therefore, we propose to implement analytical solutions where variations of temperature and moisture content are known to be almost nonvarying, while the numerical solution is implemented in the remaining region, near the boundaries. The coupling between solutions is performed assuming the continuity of both fields and fluxes at each interface. This strategy allows assuring the physical phenomenon occurring at the interface. Numerical experiments are performed, showing the accuracy, the efficiency, and the great potential of the method regarding applications in nonlinear soil problems.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3