Surface heat transfer coefficients in building envelopes: Uncertainty levels in experimental methods

Author:

Garay-Martinez Roberto12ORCID,Arregi Beñat2,Lumbreras Mikel3

Affiliation:

1. Institute of Technology, Faculty of Engineering, University of Deusto, Bilbao, Spain

2. TECNALIA, Basque Research and Technology Alliance, Derio, Spain

3. ENEDI Research Group, Energy Engineering Department, Faculty of Engineering of Bilbao, University of the Basque Country (UPV/EHU), Bilbao, Spain

Abstract

There are several research methods for the on-site assessment of U-values that aim to avoid the use of surface heat flux measurements and rely on tabulated or empirically developed correlations to define this parameter. This works performs a detailed process to estimate indoor surface heat transfer coefficients based on several experimental campaigns over building walls. Data is filtered out to remove periods with large temperature variations and/or unstable convective conditions due to HVAC. A statistical analysis is conducted, and the outcomes used to test the validity of U-value estimation approaches. The outcomes show that the actual surface heat transfer coefficients are in the range of reference works, but variations in the range of up to 2 W/m2 K are found. Uncertainty levels associated to the estimation of surface heat transfer coefficient are in the range 60% for instantaneous values while this is reduced down to 12%–20% for 8-h averages. Variations and uncertainty levels are higher for low temperature gradient situations, which are considered to be very likely for modern insulation levels. It is concluded that methods seeking to avoid the use of surface heat flux measurements need to develop much deeper knowledge in this field to gain accuracy and reliability.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3