Heat, air and moisture transport modelling in ventilated cavity walls

Author:

Van Belleghem Marnix1,Steeman Marijke2,Janssens Arnold3,De Paepe Michel1

Affiliation:

1. Department of Flow Heat and Combustion Mechanics, Ghent University, Ghent, Belgium

2. Department of Industrial Technology and Construction, Ghent University, Ghent, Belgium

3. Department of Architecture & Urban Planning, Ghent University, Ghent, Belgium

Abstract

Cavity walls are a widely used external wall type in north-western Europe with a good moisture tolerance in cool humid climates. In this work, a cavity wall configuration with a brick veneer outside leaf and a wood fibre board inside leaf is analysed with a newly developed coupled computational fluid dynamics–heat, air and moisture model. Drying of the outside or inside cavity leaf, both for summer and winter conditions was analysed. The new model was compared with a widely used simulation tool for building envelope analysis (WUFI®) that uses a simplified modelling approach for the convection in the cavity. The study showed that the simplified model overestimated the drying and moistening rates of the cavity wall compared to the detailed model. For both models the drying of the outer leaf was mainly determined by the outside conditions, and the outside leaf dried out mainly to the outside and not to the cavity. For the inside leaf, however the cavity ventilation was of major importance in drying. The study revealed that the simplified model could not be used to evaluate the drying potential of a ventilated cavity because it overestimated the ventilation effect systematically. The simplified model would in such case indicate lower moisture contents than in reality and consequently lower risk for mould growth, wood rot or other structural damage. Only detailed modelling of the convection in the cavity, as in the new model, leads to a correct evaluation of ventilated cavity walls.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3