A novel coupling control with decision-maker and PID controller for minimizing heating energy consumption and ensuring indoor environmental quality

Author:

Wang Yang12,Kuckelkorn Jens M3,Li Daoliang1,Du Jiangtao4

Affiliation:

1. College of Information and Electrical Engineering, China Agricultural University, Beijing, China

2. School of the Built Environment and Architecture, London South Bank University, London, UK

3. Division of Technology for Energy Systems and Renewable Energy, Bavarian Centre for Applied Energy Research (ZAE Bayern), Garching, Germany

4. Department of the Built Environment, Liverpool John Moores University, Liverpool, UK

Abstract

Due to climate change, global energy crisis, and high-quality life requirement for people, decreasing building energy consumption and enhancing indoor environment quality through control of heating, ventilation, and air conditioning systems tend to be increasingly important. Therefore, favorable control methods for heating and ventilation systems are urgently necessary. In this work, a new coupling control with decision-maker was proposed, developed, and investigated; meanwhile, several demand controlled ventilation strategies combined with heating control method was compared considering heating energy consumption, thermal comfort, and indoor air quality. In order to properly model the service systems, the air change rates and thermal time constants have been first measured in a reference office installed with commonly applied bottom-hinged tilted windows in our low-energy building supplied by geothermal district heating. Then, simulations have been carried out across two typical winter days in the reference office. The results illustrate that the proposed combination of suitable heating and demand controlled ventilation coupling control methods with decision-maker and proportional-integral-derivative (PID) controller could greatly reduce heating consumption in the reference room during the office time: around 52.4% (4.4 kW h energy saving) per day in winter in comparison to a commonly suggested method of intensive and brief airing. At the same time, it could ensure indoor CO2 concentration to keep within the pre-set ranges (Pettenkofer limit: 1000 ppm) as well as low variations of indoor temperature (standard deviation (SD): 0.1°C).

Funder

Deutsche Bundesstiftung Umwelt

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3