Multi-step solar radiation prediction using transformer: A case study from solar radiation data in Tokyo

Author:

Dong Huagang1,Tang Pengwei1ORCID,He Bo1,Chen Lei1,Zhang Zhuangzhuang1,Jia Chengqi1

Affiliation:

1. CSCEC Xinyue Construction Engineering Co., Ltd, Guangdong, Guangzhou, China

Abstract

The widespread advancement of computer technology resulted in the increasing usage of deep learning models for predicting solar radiation. Numerous studies have been conducted to explore their research potential. Nevertheless, the application of deep learning models in optimizing building energy systems, particularly in a multi-step solar radiation prediction model for model predictive control (MPC), remains a challenging task. This is mainly due to the intricacy of the time series and the possibility of accumulating errors in multistep forecasts. In this study, we propose the development of a transformer-based attention model for predicting multi-step solar irradiation at least 24 h in advance. The model is trained and tested using measured solar irradiation data and temperature forecast data obtained from the Tokyo Meteorological Agency. The findings indicate that the transformer model has the capability to effectively mitigate the issue of error accumulation. Additionally, the generative model exhibits a significant improvement in accuracy, with a 62.35% increase when compared to the conventional regression LSTM model. Additionally, the transformer model has been shown to attain superior prediction stability, mitigate the effects of error accumulation in multi-step forecasting, and circumvent training challenges stemming from gradient propagation issues that can occur with recurrent neural networks.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3