Multi-objective optimization of kinetic facade aperture ratios for daylight and solar radiation control

Author:

Wagiri Felicia1ORCID,Shih Shen-Guan1,Harsono Kevin1,Wijaya Deser Christian2

Affiliation:

1. Department of Architecture, National Taiwan University of Science and Technology, Taipei, Taiwan

2. Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

Abstract

This study explores the optimization of kinetic facades to promote environmental sustainability in building designs, addressing the critical issues of high energy consumption and CO2 emissions prevalent in the construction sector. The focus is on achieving an intricate balance between maximizing natural daylight and minimizing solar radiation using innovative kinetic facade designs. Parametric modeling tools are utilized in the design process to experiment with various facade configurations. The effectiveness of these designs is then validated using both digital and physical prototypes, with their adaptability to diverse climatic conditions evaluated through dynamic simulations. A key component of the study is the application of the Wallacei plugin for Grasshopper, which assists in multi-objective optimization to determine the most effective facade aperture ratios. The results demonstrates a substantial reduction in solar radiation levels, with a 70% decrease on the first floor and a 76% decrease on the seventh floor, achieved by optimizing aperture ratios. The study concludes that optimizing kinetic facades significantly improves building performance compared to traditional glass facades, offering an effective balance between daylight enhancement and solar radiation reduction, influenced by seasonal changes. It also emphasizes the importance of factors such as building height and the surrounding environment in facade design. Overall, the findings highlight kinetic facades as a viable solution for improving building efficiency and occupant comfort, suggesting a promising avenue for advancements in architectural design and construction.

Funder

Gomore Material Technology Co., Ltd

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3