Comparative Analysis of Response-factor and Finite-volume based Methods for predicting Heat and Moisture Transfer through Porous Building Materials

Author:

Abadie Marc1,Mendes Nathan1

Affiliation:

1. Thermal Systems Laboratory, LST Pontifical Catholic, University of Paraná, PUC-PR/CCET Curitiba PR, 80215-901, Brazil

Abstract

Many of the now well-known building energy simulation programs use the response factor method developed in the early 1970s by Stephenson and Mitalas. These are TRNSYS, EnergyPlus, Blast, and DOE-2, to name but a few. Others, such as PowerDomus, ESP-r, and BSim, perform finite-volume or finite-difference calculations to solve the heat and mass transfer through the building envelope. These two different approaches are known to have strengths and weaknesses. The main objective of the present exercise is to compare the prediction of both methods. A two-step procedure is employed here. The first deals with the pure thermal problem, i.e., without moisture calculation. Three different cases of increasing complexity are studied and compared to analytical solutions. The second step focuses on the moisture problem alone by comparing the responses obtained with a two-layer buffer storage model and a finite-volume discretization for moisture transfer. Results show that time step values are determinant even for pure thermal cases where the classical value of 1 h can lead to notable errors. For problems with moisture sorption in the wall, it has been shown that grid refinement is a very decisive parameter, while the time step has to be set, to unusually small values, to achieve a good response.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3