Affiliation:
1. Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97207 USA
Abstract
This study explores the complex and interacting physical mechanisms that lead to building energy use implications of green roof design decisions. The EnergyPlus building energy simulation program, complete with an integrated green roof simulation module, was used to analyze the effects of roof surface design on building energy consumption. Simulations were conducted for both black and white membrane control roofs and nine variations of green roofs. The investigation included a total of eight buildings – new office and new multi-family lodging buildings, each in four cities representing diverse climatic conditions: Houston, Texas; New York City, New York; Phoenix, Arizona; and Portland, Oregon. Building energy performance of green roofs was generally found to improve with increasing soil depth and vegetative density. Heating (natural gas) energy savings were greatest for the lodging buildings in the colder climates. Cooling energy (electricity) savings varied for the different building types and cities. In all cases, a baseline green roof resulted in a heating energy cost savings compared to the conventional black membrane roof. In six of the eight buildings, the white roof resulted in lower annual energy cost than the baseline green roof. However, a high vegetative cover green roof was found to outperform the white roof in six of the eight buildings.
Subject
General Materials Science,Building and Construction
Cited by
122 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献