Development of a High-Throughput Human HepG2 Dual Luciferase Assay for Detection of Metabolically Activated Hepatotoxicants and Genotoxicants

Author:

Liu Xuemei1,Kramer Jeffrey A.1,Hu Yi1,Schmidt James M.1,Jiang Jianghong1,Wilson Alan G. E.1

Affiliation:

1. From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas.

Abstract

Hepatic toxicity remains a major concern for drug failure; therefore, a thorough examination of chemically induced liver toxicity is essential for a robust safety evaluation. Current hypotheses suggest that the metabolic activation of a drug to a reactive intermediate is an important process. In this article, we describe a new high-throughput GADD45β reporter assay developed for assessing potential liver toxicity. Most importantly, this assay utilizes a human cell line and incorporates metabolic activation and thus provides significant advantage over other comparable assays used to determine hepatotoxicity. Our assay has low compound requirement and relies upon 2 reporter genes cotransfected into the HepG2 cells. The gene encoding Renilla luciferase is fused to the CMV promoter and provides a control for cell numbers. The firefly luciferase gene is fused to the GADD45β promoter and used to report an increase in DNA damage. A dual luciferase assay is performed by measuring the firefly and Renilla luciferase activities in the same sample. Results are expressed as the ratio of the 2 luciferase activities; increases over the control are interpreted as evidence of stress responses. This mammalian dual luciferase reporter has been characterized with, and without, metabolic activation using positive and negative control agents. Our data demonstrate that this assay provides for an assessment of potential toxic metabolites, is adaptable to a high-throughput platform, and yields data that accurately and reproducibly detect hepatotoxicants.

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3