Affiliation:
1. Pharmacology and Toxicology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
2. Synthetic Chemistry Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
Abstract
Synthesis and bioefficacy of fentanyl and its 8 new 1-substituted analogs (1-8) were earlier reported by us. Of these 8 compounds, N-(1-(2-phenoxyethyl)-4-piperidinyl)propionanilide (2), N-isopropyl-3-(4-( N-phenylpropionamido)piperidin-1-yl)propanamide (5), and N- t-butyl-3-(4-( N-phenylpropionamido)piperidin-1-yl) propanamide (6) were found to be more effective and less toxic compared to fentanyl. The present study reports the acute effect of fentanyl (0.50 Median Lethal Dose (LD50); intraperitoneal) and its 3 analogs (2, 5, and 6) on various biochemical and oxidative parameters in mice and various physiological parameters in rats. Blood alkaline phosphatase (1 hour and 7 days) and urea levels (1 hour) were significantly elevated by fentanyl, while alanine aminotransferase levels (1 hour) were increased by both fentanyl and analog 2 compared to the corresponding control. Increase in partial pressure of carbon dioxide and decrease in partial pressure of oxygen were also caused by fentanyl and analog 2 (1 hour). Analog 6 alone elevated malondialdehyde levels in the brain, liver, and kidney tissues (7 days). The LD50 of fentanyl and analogs 2, 5, and 6 were found to be 0.879, 87.88, 69.80, and 55.44 mg/kg, respectively, in rats. Significant decrease in heart rate, mean arterial pressure, respiratory rate (RR), and neuromuscular transmission was produced by fentanyl and analog 2, while analog 5 decreased the RR alone. The changes, particularly the respiratory depression, were found to be reversed by naloxone, a μ-receptor antagonist. Thereby, indicating involvement of μ-receptor mediated effects of the compounds. To conclude, all the analogs were found to be less toxic compared to fentanyl, suggesting their possible role in pain management.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献