Inclusion of Histopathology in Dose Range-Finding Nonclinical Studies for Inhaled Drug Products

Author:

Resseguie Emily A.1ORCID,Palmer Helen2

Affiliation:

1. Labcorp Early Development Laboratories Inc., Somerset, NJ, USA

2. Labcorp Early Development Laboratories Limited, Huntingdon, UK

Abstract

Drug development is a lengthy process that promotes and protects the health and safety of future patients. Nonclinical safety studies follow essentially similar designs that fulfill regulatory requirements but are amended based on factors including the mechanism of action, class of molecule, and route of administration. Clinical observations, clinical pathology, and macroscopic pathology in dose range-finding (DRF) studies generally provide sufficient information to select doses for pivotal studies by most delivery routes. Inhaled drug candidates are recognized for producing adverse effects on the respiratory system at the microscopic level that may otherwise be unpredictable; therefore, unlike other routes of administration, inhalation DRF studies typically include histopathology of the respiratory tract. Histopathology evaluations can add several weeks to the Investigational New Drug (IND) application timeline along with additional costs but have been considered necessary to support accurate dose selection for adequate safety margins, thereby potentially avoiding additional studies and animal usage by ensuring achievement of a NOAEL in the pivotal studies. Therefore, DRF inhalation studies initiated from 2018 to 2021 at Labcorp were reviewed to determine whether inclusion of histopathology on preliminary inhalation studies was necessary for subsequent dose selection. Histopathology findings in the DRF impacted dose selection in pivotal inhalation studies for approximately 45% of rat and dog studies. This review identified histopathology findings in rat and dog that support continued inclusion of respiratory tract histopathology in DRF studies. Future investigations will evaluate potential surrogate endpoints for these findings, which could reduce nonclinical drug development timelines by several weeks.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3