Apoptotic Effects of a Thioether Analog of Vitamin K3 in a Human Leukemia Cell Line

Author:

Asami Satoru1ORCID,Suzuki Mikana12,Nakayama Toshimitsu3,Shimoda Yasuyo4,Miura Motofumi5ORCID,Kato Koichi4,Tokuda Eiichi1,Ono Shinichi1,Kawakubo Takashi6,Nishizawa Kenji2,Yamanaka Kenzo4,Suzuki Takashi1

Affiliation:

1. Laboratory of Clinical Medicine, Nihon University School of Pharmacy, Chiba, Japan

2. Department of Pharmacy, Toho University Medical Center Omori Hospital, Tokyo, Japan

3. Department of Hospital Pharmacy, Nihon University School of Medicine, Tokyo, Japan

4. Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, Chiba, Japan

5. Department of Molecular Chemistry, Nihon University School of Pharmacy, Chiba, Japan

6. Department of Pharmacy, Jikei University School of Medicine, Tokyo, Japan

Abstract

Research suggests that thioether analogs of vitamin K3 (VK3) can act to preserve the phosphorylation of epidermal growth factor receptors by blocking enzymes (phosphatases) responsible for their dephosphorylation. Additionally, these derivatives can induce apoptosis via mitogen-activated protein kinase and caspase-3 activation, inducing reactive oxygen species (ROS) production, and apoptosis. However, vitamin K1 exhibits only weak inhibition of phosphatase activity, while the ability of VK3 to cause oxidative DNA damage has raised concerns about carcinogenicity. Hence, in the current study, we designed, synthesized, and screened a number of VK3 analogs for their ability to enhance phosphorylation activity, without inducing off-target effects, such as DNA damage. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay revealed that each analog produced a different level of cytotoxicity in the Jurkat human leukemia cell line; however, none elicited a cytotoxic effect that differed significantly from that of the control. Of the VK3 analogs, CPD5 exhibited the lowest EC50, and flow cytometry results showed that apoptosis was induced at final concentrations of ≥10 μM; hence, only 0.1, 1, and 10 μM were evaluated in subsequent assays. Furthermore, CPD5 did not cause vitamin K-attributed ROS generation and was found to be associated with a significant increase in caspase 3 expression, indicating that, of the synthesized thioether VK3 analogs, CPD5 was a more potent inducer of apoptosis than VK3. Hence, further elucidation of the apoptosis-inducing effect of CPD5 may reveal its efficacy in other neoplastic cells and its potential as a medication.

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3