Immunohistochemical Changes in the Mouse Striatum Induced by the Pyrethroid Insecticide Permethrin

Author:

Pittman Julian T.1,Dodd Celia A.1,Klein Bradley G.1

Affiliation:

1. Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA

Abstract

Epidemiological studies have linked insecticide exposure and Parkinson's disease. In addition, some insecticides produce damage or physiological disruption within the dopaminergic nigrostriatal pathway of non-humans. This study employed immunohistochemical analysis in striatum of the C57BL/6 mouse to clarify tissue changes suggested by previous pharmacological studies of the pyrethroid insecticide permethrin. Dopamine transporter, tyrosine hydroxylase, and glial fibrillary acidic protein immunoreactivities were examined in caudate-putamen to distinguish changes in amount of dopamine transporter immunoreactive protein from degeneration or other damage to dopaminergic neuropil. Weight-matched pairs of pesticide-treated and vehicle-control mice were dosed and sacrificed on the same days. Permethrin at 0.8, 1.5 and 3.0 mg/kg were the low doses and at 200 mg/kg the high dose. Brains from matched pairs of mice were processed on the same slides using the avidin-biotin technique. Four fields were morphometrically located in each of the serial sections of caudateputamen, digitally photographed, and immunopositive image pixels were counted and compared between members of matched pairs of permethrin-treated and vehicle-control mice. For low doses, only 3.0 mg/kg produced a significant decrease in dopamine transporter immunostaining. The high dose of permethrin did not produce a significant change in dopamine transporter or tyrosine hydroxylase immunostaining, but resulted in a significant increase in glial fibrillary acidic protein immunostaining. These data suggest that a low dose of permethrin can reduce the amount of dopamine transporter immunoreactive protein in the caudate-putamen. They also suggest that previously reported reductions in dopamine uptake of striatal synaptosomes of high-dose mice may be due to nondegenerative tissue damage within this region as opposed to reductions of dopamine transporter protein or death of nigrostriatal terminals. These data provide further evidence that insecticides can affect the primary neurodegenerative substrate of Parkinson's disease.

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3