Cytotoxicity Assessment of Gallium- and Indium-Based Nanoparticles Toward Human Bronchial Epithelial Cells Using an Impedance-Based Real-Time Cell Analyzer

Author:

Nguyen Chi H.1ORCID,Zeng Chao1,Boitano Scott2,Field Jim A.1,Sierra-Alvarez Reyes1ORCID

Affiliation:

1. Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA

2. Department of Physiology and The Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA

Abstract

The semiconductor manufacturing sector plans to introduce III/V film structures (eg, gallium arsenide (GaAs), indium arsenide (InAs) onto silicon wafers due to their high electron mobility and low power consumption. Aqueous solutions generated during chemical and mechanical planarization of silicon wafers can contain a mixture of metal oxide nanoparticles (NPs) and soluble indium, gallium, and arsenic. In this work, the cytotoxicity induced by Ga- and In-based NPs (GaAs, InAs, Ga2O3, In2O3) and soluble III-V salts on human bronchial epithelial cells (16HBE14o-) was evaluated using a cell impedance real-time cell analysis (RTCA) system. The RTCA system provided inhibition data at different concentrations for multiple time points, for example, GaAs (25 mg/L) caused 60% inhibition after 8 hours of exposure and 100% growth inhibition after 24 hours. Direct testing of As(III) and As(V) demonstrated significant cytotoxicity with 50% growth inhibition concentrations after 16-hour exposure (IC50) of 2.4 and 4.5 mg/L, respectively. Cell signaling with rapid rise and decrease in signal was unique to arsenic cytotoxicity, a precursor of strong cytotoxicity over the longer term. In contrast with arsenic, soluble gallium(III) and indium(III) were less toxic. Whereas the oxide NPs caused low cytotoxicity, the arsenide compounds were highly inhibitory (IC50of GaAs and InAs = 6.2 and 68 mg/L, respectively). Dissolution experiments over 7 days revealed that arsenic was fully leached from GaAs NPs, whereas only 10% of the arsenic was leached out of InAs NPs. These results indicate that the cytotoxicity of GaAs and InAs NPs is largely due to the dissolution of toxic arsenic species.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Toxicology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3