Zinc-Excess Intake Causes the Deterioration of Renal Function Accompanied by an Elevation in Systemic Blood Pressure Primarily Through Superoxide Radical-Induced Oxidative Stress

Author:

Yanagisawa Hiroyuki1,Miyazaki Takashi2,Nodera Makoto3,Miyajima Yuka3,Suzuki Takashi1,Kido Takamasa1,Suka Machi1

Affiliation:

1. Department of Public Health and Environmental Medicine, Faculty of Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan

2. Community Health Science Center, Saitama Medical University, Moroyama, Iruma-gun, Saitama, Japan

3. School of Medical Technology and Health, Saitama Medical University, Hidaka City, Saitama, Japan

Abstract

Using rats fed 22 g/d of a control diet containing 0.005% zinc (Zn) or 2 Zn-excess diets containing 0.05% or 0.2% Zn for 4 weeks, we examined the mechanisms involved in the deterioration of renal function induced by Zn-excess intake. An increase in Zn intake elevated mean blood pressure (BP) and reduced renal blood flow (RBF) and inulin clearance in a dose-dependent manner. This decline in inulin clearance may be derived from a fall in RBF. Administration of the nitric oxide (NO) synthase inhibitor, Nω-nitro-l-arginine methyl ester, markedly increased mean BP and significantly decreased RBF in the 3 groups of rats. Administration of the exogenous superoxide radical (OO) scavenger, tempol, significantly decreased mean BP and substantially increased RBF in all groups of rats. These observations suggest that both an elevation in systemic BP and a reduction in RBF seen in the 2 Zn-excess diet groups result from a decrease in the action of the vasodilator, NO, through the formation of peroxynitrite based on the nonenzymatic reaction of NO and increased OO. Indeed, the activity of the endogenous OO scavenger, copper/Zn-superoxide dismutase, was significantly reduced in the vessel wall of rats fed 2 Zn-excess diets versus a control diet. 8-Hydroxy-2′-deoxyguanosine formation caused by OO generation was notably elevated in the kidneys of rats fed 2 Zn-excess diets relatively to rats fed a control diet. Thus, Zn-excess intake leads to the aggravation of renal function concomitantly with an increase in systemic BP predominantly through the oxidative stress caused by OO.

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3