Evaluation of the Effect of Hyaluronic Acid–Based Biomaterial Enriched With Tenascin-C on the Behavior of the Neural Stem Cells

Author:

Shahi Maryam1,Mohammadnejad Daruosh2,Karimipour Mohammad23ORCID,Rahbarghazi Reza13,Abedelahi Ali12

Affiliation:

1. Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2. Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

3. Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

One of the most important natural extracellular constituents is hyaluronic acid (HA) with the potential to develop a highly organized microenvironment. In the present study, we enriched HA hydrogel with tenascin-C (TN-C) and examined the viability and survival of mouse neural stem cells (NSCs) using different biological assays. Following NSCs isolation and expansion, their phenotype was identified using flow cytometry analysis. Cell survival was measured using MTT assay and DAPI staining after exposure to various concentrations of 50, 100, 200, and 400 nM TN-C. Using acridine orange/ethidium bromide staining, we measured the number of live and necrotic cells after exposure to the combination of HA and TN-C. MTT assay revealed the highest NSCs viability rate in the group exposed to 100 nM TN-C compared to other groups, and a combination of 1% HA + 100 nM TN-C increased the viability of NSCs compared to the HA group after 24 hours. Electron scanning microscopy revealed the higher attachment of these cells to the HA + 100 nM TN-C substrate relative to the HA substrate. Epifluorescence imaging and DAPI staining of loaded cells on HA + 100 nM TN-C substrate significantly increased the number of NSCs per field over 72 hours compared to the HA group ( P < 0.05). Live and dead assay revealed that the number of live NSCs significantly increased in the HA + 100 TN-C group compared to HA and control groups. The enrichment of HA substrate with TN-C promoted viability and survival of NSCs and could be applied in neural tissue engineering approaches and regenerative medicine.

Funder

Tabriz University of Medical Sciences

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3