Fine Particulate Matter and Sulfur Dioxide Coexposures Induce Rat Lung Pathological Injury and Inflammatory Responses Via TLR4/p38/NF-κB Pathway

Author:

Li Ruijin1,Zhao Lifang1,Tong Jinlong1,Yan Yuchao1,Xu Chong1

Affiliation:

1. Institute of Environmental Science, Shanxi University, Taiyuan, People’s Republic of China

Abstract

Fine particulate matter (PM2.5) and sulfur dioxide (SO2) are 2 common air pollutants, but their toxicological effects of coexposure are still not fully clear. In this study, SO2 exposure (5.6 mg/m3) couldn’t cause obvious inflammatory responses in rat lungs. The PM2.5 exposure (1.5 mg/kg body weight) increased inflammatory cell counts in bronchoalveolar lavage fluid (BALF) and some inflammation damage. Importantly, SO2 and PM2.5 (1.5, 6.0, and 24.0 mg/kg) coexposure induced pathological and ultrastructural damage and raised inflammatory cells in BALF compared with the control. Also, they significantly elevated the levels of pro-inflammatory cytokines, adhesion molecule, and nitric oxide (NO) and promoted the gene expression of nuclear factor kappa B (NF-κB), phosphorylated p38 (p-p38), and Toll-like receptor 4 (TLR4) in rat lungs treated with higher dose of PM2.5 (6.0 and 24.0 mg/kg) plus SO2 relative to the control or SO2 group, along with the decreased inhibitor of NF-κBα and increased inhibitor of NF-κB kinase β expressions. The changes in the inflammatory markers in the presence of PM2.5 plus SO2 were not significant compared with the PM2.5 group. The results indicated that inflammatory injury and pathological and ultrastructural damage in rat lungs exposed to PM2.5 plus SO2 were involved in TLR4/p38/NF-κB pathway activation accompanied by oversecretion of pro-inflammatory cytokine, adhesion molecule, and NO. It provides more useful evidence to understand the possible toxicological mechanism that PM2.5 and SO2 copollution exacerbate lung disease.

Publisher

SAGE Publications

Subject

Toxicology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3