Finishing the surface micro-layer of additively manufactured TiAl alloy using electro-thermal discharge assisted post-processing

Author:

Boban Jibin1ORCID,Ahmed Afzaal1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, Kerala, India

Abstract

Selective laser melting (SLM) of titanium–aluminium (TiAl) alloy components has gained significant attention in the modern industrial world. The flexibility of the SLM process in producing complex shapes with minimum utilization of material and energy makes it dominant over other manufacturing techniques. As aerospace and biomedical industries demand complex-shaped TiAl alloy components, part fabrication using SLM becomes the ultimate solution. However, the unacceptable level of surface integrity and anisotropic behavior of SLM components demand post processing operations such as laser polishing, chemical polishing, and conventional polishing methods. In this study, a recently developed polishing method called wire electrical discharge polishing (WEDP) is performed on TiAl alloys for obtaining a smooth and defect-free surface. This study aims to investigate the micro-layer modification occurring to the WEDP-processed surface in detail. The experimental results establish the effectiveness of WEDP method in terms of improved surface integrity. The surface finish (Sa) got enhanced by ~88% after WEDP processing. In addition, the thickness of recast layer formed by WEDP was found to be minimum. Moreover, post-processing of TiAl alloy resulted in better surface morphology specifically at lower settings of peak current. It is noteworthy that the migration of wire material was minimum with zinc-coated brass electrode compared to the normal brass electrode. Hence, coated wire electrodes are recommended for WEDP process. In short, an excellent surface integrity can be achieved using WEDP process through favorable surface modification aided by lower peak current and coated wire electrodes. Furthermore, less electrode wear observed in WEDP process enables the deployment of lower feed rates leading to minimal electrode consumption.

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3