Experimental study and modeling of laser micro texturing of Nitinol

Author:

Sharma Prasenjit1,Purushothaman Sangeeth2,Sachdeva Meenu3,Srinivas M. Shanmuka2,Venkaiah N.2,Ramkumar J.1,Shankar Mamilla Ravi2ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

2. Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India

3. Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

Abstract

The unique material properties of Nitinol have led to its extensive use in the biomedical field and microdevices. However, the machining of Nitinol remains a challenge due to its exceptional mechanical properties. This led to the use of a non-conventional machining process, of which laser machining proved to be most suitable and promising due to its versatility. To understand the process, the sample was irradiated by a laser beam over a straight line. An analytical model attempts to understand the process and predict the minimum process parameters necessary to conduct the machining process. The results are compared experimentally, wherein the influence of laser power and scan speed over the surface morphology, hardness, and groove dimensions are studied in detail. The optimum process signature was 90 W of laser fluence with a 100 mm/s scanning speed.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3