Improvement in surface quality of diamond-turned aluminium substrate by using hydrogen peroxide: a molecular dynamics simulation study

Author:

Ranjan Prabhat1,Sharma Anuj2ORCID,Balasubramaniam R.12ORCID

Affiliation:

1. Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

2. Homi Bhabha National Institute, Mumbai, Maharashtra, India

Abstract

In this work, the atomic mechanism of chemical treatment on diamond-turned aluminium surface due to aqueous H2O2 is investigated using a reactive molecular dynamics simulation (R-MDS). This study is carried out to understand the mechanism of surface quality improvement of a diamond-turned aluminium workpiece due to chemical treatment. Surface quality improvement is focused to analyse the effect of chemical treatment process for improving surface finish, reflectance and chemical stability of the workpiece. It is observed that the diamond-turned surface contains a higher cohesive energy as compared to atomically smooth surfaces. Chemical treatment does more material removal on nano-peaks with respect to the smooth surface, and this helps to reduce the cohesive energy as low as naturally possible. By applying this treatment, the optical quality of the workpiece gets enhanced drastically. R-MDS also reveals that the nano-peaks of diamond turn machining (DTM) surface can further improve surface finish by using the chemical treatment process, and the same is validated by experiments. Experimental data also support that due to the reduction of surface roughness, reflectance increases in a broad band of wavelength. The present work shows that material removal from the nano-peaks of workpiece occurs due to the oxygen radicals generated from H2O2, which raise the local temperature, followed by temperature-assisted chemical reaction. When most of the nano-peak atoms are removed, further material removal stops. Experimental results also support the mechanism of such process of chemical treatment. Hence, the diamond turned surface can be further improved beyond the capability of the diamond turning process to cater the need for optics and astronomical mirror at-least one step ahead in the domain of ultra-precision manufacturing.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3