Study of side burr formation in steady-state nano-polishing of Si-wafer using molecular dynamics simulation

Author:

Dodmani Amit1,Owhal Ayush23ORCID,Mishra Vinod45ORCID,Roy Tribeni2ORCID

Affiliation:

1. Department of Mechanical Engineering, IIT Madras, Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, BITS Pilani, Pilani, Rajasthan, India

3. Department of Mechanical Engineering, SD Bansal College of Engineering, Indore, Madhya Pradesh, India

4. CSIR-Central Scientific Instruments Organisation, Chandigarh, India

5. Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, Uttar Pradesh, India

Abstract

With advancements in the semiconductor industry, it is required to have angstrom level surface finish on silicon wafers which is achieved by nano-polishing. However, side burr is formed due to material pile-up from material removal due to abrasive which becomes detrimental to achieving the high surface finish. This study employs molecular dynamics simulations to explore the mechanism underlying side burr formation during nano-polishing of mono-crystalline silicon (Si)-wafer. The study utilizes a diamond nano-abrasive grit to scratch the surface of the Si-wafer and investigates the formation of pile-ups during the steady-state process. It was observed that increasing the depth of cut by four times led to a 6.3-fold increase in the number of amorphous atoms, indicating greater bond breakage in the direction of scratching. As a result, the cutting force exceeds the thrust force at larger depths of the cut. The correlation between the side burr height and the depth of cut is also studied. Results show that the side burr height ratio increases with the depth of cut, indicating a higher sensitivity of side burr height to the depth of cut. The study suggests that to achieve a ductile mode of material removal and minimize the height of the side burr during nano-polishing of Si-wafers, it is crucial to maintain the depth of cut at or below half (≤0.5) of the abrasive radius and ensure an average friction coefficient below 0.6. The outcome of this study can be useful for the actual manufacturing of miniaturized sensors, actuators, and microsystems for microelectromechanical system devices where a high surface finish is crucial.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3