Studies on fabrication of protruded multi-shaped micro-feature array on AA 6063 by laser micromachining

Author:

Murugayan Saravanan1ORCID,D Simson1,Chanda Samarjeet1,S Kanmani Subbu1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Palakkad, Kerala, India

Abstract

Miniaturization of parts of devices is the driving force for fabrication of micro-features. In this study fabrication of protruded multi-shaped micro-feature array on AA 6063 is attempted by laser micromachining. For fabricating the protruded microfeatures, the process parameters such as laser power, scanning speed and frequency of the laser beam have been optimized by considering track depth, width, and surface roughness as the output parameters. Three different cross sections in the tracks such as pileup section, W-section, and Gaussian groove section are observed. It is found that shape of the tracks vary with the scanning speed for the same power and frequency of the laser beam. The tracks of pileup section, W-section, and Gaussian groove section were produced for a laser scanning speed of 100 mm/s, 200mm/s, and 300 mm/s, respectively. Further, a laser-thermal ablative model is developed for predicting the depth of the single track and simulated using COMSOL® Multiphysics. The predicted track depths obtained from the simulations have good agreement with experimental results. In order to produce the protruded microfeatures of different shapes, multiple track analysis is done by fabricating the single tracks adjacent to one another by overlapping them, and the overlapping distance is optimized. The protruded microfeatures are then fabricated by removing the surrounding material for different scanning strategies and it is found that the contour strategy produced the features with minimal form error. Finally, it is demonstrated that an array of protruded micro-features of polygon (square, hexagon), and circular cross sections can be fabricated using the optimized process parameters for various applications.

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3