On microstructural and mechanical properties of 21-4-N nitronic steel joint developed using microwave energy

Author:

Bhandari Shivani1,Gupta Shivani1,Mishra Radha Raman2,Sharma Apurbba Kumar1,Arora Navneet1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India

2. Design Innovation Center, Indian Institute of Technology Roorkee, Uttarakhand, India

Abstract

In the current experimental work, an effort has been made to explore the feasibility of fusion joints of 21-4-N nitronic steel employing microwave heating. These fusion joints were developed inside a domestic microwave applicator operating at 900 W. Microwave energy was used to fabricate the joints in hybrid heating mode by converting electromagnetic energy into heat at 2.45 GHz. Charcoal and SiC plates were used as susceptor and separator, respectively, and nickel powder was used as the interface material. The developed joints were characterized for their microstructural and mechanical properties. The microstructures indicate a complete fusion of nickel interfacing powder with the faying surfaces. XRD results show the formation of metallic nitrides and carbide phases (Cr2N, Fe3N, and Fe2C) and the FeNi phase at the weld zone. Furthermore, the observed average tensile strength of the fusion joints was approximately 61% of base metal. The reduction in the stress and elongation compared to the base metal were 38.67% and 12.68%, respectively. The average microhardness of the microwave joints was monitored as 407 ± 69.27 HV. The results indicate the feasibility of fusion joints of nitronic steel using microwave energy.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3