Geometry and thickness dependant anomalous mechanical behavior of fabricated SU-8 thin film micro-cantilevers

Author:

Basu Aviru Kumar12,Basak Anup3,Bhattacharya Shantanu12ORCID

Affiliation:

1. Design Program, Indian Institute of Technology Kanpur, Uttar Pradesh, India

2. Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India

3. Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh, India

Abstract

SU-8 micro-cantilever arrays consisting of V- and M-shaped structures fabricated using a simplified single hard mask step. Bending tests were performed under similar peak loads (ranging 2–10 µN), with thickness ranging between micron (3.5 µm) and sub-micron (0.2 µm) scales. Various mechanical properties such as stiffness and hysteresis are determined from the load versus deflection curves. When the thickness of the V-shaped beam is decreased from 2 µm to 0.2 µm, the stiffness increases by a factor of 2.7, which is in contradiction with the classical beam theory according to which the stiffness for 0.2 µm beam should be three orders of magnitude less than that of 2 µm beam. Micropolar elasticity theory with a variable-intrinsic length scale (thickness dependant) is used to explain such an anomalous response. Experimentally obtained stiffness of two M-shaped beams of thickness 2 µm and 0.2 µm are almost identical. Reason behind this contradictory result is that the thicker beam has a residual strain with a large plastic deformation which usually increases the cross-linking network density, leading to increase in elastic modulus, hardness and thus stiffness of polymers. But the thinner beam has undergone an elastic deformation. The size effect of V- and M-shaped cantilever beams is discussed.

Publisher

SAGE Publications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3