Additive manufacturing as an emerging technology for fabrication of microelectromechanical systems (MEMS)

Author:

Kumar Sanjay1,Bhushan Pulak1,Pandey Mohit2,Bhattacharya Shantanu12

Affiliation:

1. Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

2. Design Programme, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

Abstract

The recent success of additive manufacturing processes (also called, 3D printing) in the manufacturing sector has led to a shift in the focus from simple prototyping to real production-grade technology. The enhanced capabilities of 3D printing processes to build intricate geometric shapes with high precision and resolution have led to their increased use in fabrication of microelectromechanical systems (MEMS). The 3D printing technology has offered tremendous flexibility to users for fabricating custom-built components. Over the past few decades, different types of 3D printing technologies have been developed. This article provides a comprehensive review of the recent developments and significant achievements in most widely used 3D printing technologies for MEMS fabrication, their working methodology, advantages, limitations, and potential applications. Furthermore, some of the emerging hybrid 3D printing technologies are discussed, and the current challenges associated with the 3D printing processes are addressed. Finally, future directions for process improvements in 3D printing techniques are presented.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3