Material perspective on the evolution of micro- and nano-scale cutting of metal alloys

Author:

Rahman M. Azizur1,Rahman Mustafizur1,Kumar A. Senthil1

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, Singapore

Abstract

Microfabrication plays an active role in miniaturization of products and components in various emerging fields ranging from pharmaceuticals and bio-medical applications to electro-mechanical sensors and actuators to chemical microreactors and mechanical microturbines. Tool-based machining is one of the key technologies of microfabrication. The machining of materials on the micrometre and nanometre scales is fundamental for the fabrication of 3D micro components. However, there are limitations of scaling down the mechanical machining process from the macro- to micro- to nanoscales. Several factors that are not significant in conventional machining become significant in micro/nano-scale machining. This article identifies the important material-related issues on the evolution of micro cutting from conventional cutting process. The main focus is given to the state-of-the art micro/nano-cutting technologies of metal alloys with material perspective. Furthermore, a promising research of coupling the additive and subtractive manufacturing technologies has been highlighted to improve the surface quality of 3D-printed metallic parts.

Publisher

SAGE Publications

Reference57 articles.

1. AltintasY. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. Chs. 4–5. New York: Cambridge University Press, 2012, pp.4–65.

2. GrooverMP. Fundamentals of modern manufacturing. New York, NY: John Wiley & Sons, 2002, pp. 480–481.

3. SharmaPC. A textbook of production technology. New Delhi: S. Chand Publishing, 2012, pp.722–724.

4. CNC microturning: an application to miniaturization

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3