Measurement and calculation of adiabatic surface temperature in a full-scale compartment fire experiment

Author:

Byström Alexandra1,Cheng Xudong12,Wickström Ulf13,Veljkovic Milan1

Affiliation:

1. Division of Structural and Construction Engineering, Luleå University of Technology, Luleå, Sweden

2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, P.R. China

3. SP Technical Research Institute of Sweden, Borås, Sweden

Abstract

Adiabatic surface temperature is an efficient way of expressing thermal exposure. It can be used for bridging the gap between fire models and temperature models, as well as between fire testing and temperature models. In this study, a full-scale compartment fire experiment with wood crib fuel was carried out in a concrete building. Temperatures were measured with plate thermometers and ordinary thermocouples. Five plate thermometers and five thermocouples with a diameter of 0.25 mm were installed at different positions. These two different temperature devices recorded different temperatures, especially near the floor surface. The adiabatic surface temperature was derived by a heat balance analysis from the plate thermometer measurements. The thermal inertia of the plate thermometer was taken into account to correct the measured results. In addition, the fire experiment scenario was also simulated with fire dynamics simulator. The fire source was specified as a given heat release rate, which was calculated from the measured mass loss rate of the wood fuel. The adiabatic surface temperatures at these measuring positions were simulated by the fire dynamics simulator model and compared with the experimental adiabatic surface temperatures. The comparative results showed that fire dynamics simulator predicted the adiabatic surface temperature accurately during the steady-state period.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3