Affiliation:
1. Centre for Materials Research and Innovation University of Bolton, Bolton, BL3 5AB, UK,
2. Centre for Materials Research and Innovation University of Bolton, Bolton, BL3 5AB, UK
Abstract
Zinc stannate and hydroxystannate are used as synergists in fire-retardant systems in conjunction with halogenated species where their behavior is generally considered to be similar to antimony-containing synergists while offering the additional properties of smoke suppression and relative nontoxicity. The literature most often compares relative synergistic behaviors qualitatively but this article determines such behavior quantitatively using Lewin’s synergistic effectiveness parameter, ES, calculated from sample limiting oxygen index (LOI) data. Flame-retardant formulations comprising zinc stannate (ZS), zinc hydroxystannate (ZHS), or antimony III oxide (ATO) in combination with selected and polymer-compatible bromine-containing flame retardants were formulated in commercial grades of poly(vinyl chloride) (PVC)), thermoset polyester resin, and polyamide 6. PVC formulations simulated both commercial cable and plastisol applications and comprised either a phthalate or aryl phosphate ester as plasticizer in combination with selected synergists. All formulations were subjected to flammability testing using LOI, UL94 (vertical sample mode), and cone calorimetric (including smoke analysis) methods. For all PVC/synergist combinations containing the phthalate plasticizer, synergy was evident with 2.0 > ES > 1.0 and a relative effectiveness order ATO > ZHS > ZS. Zinc borate present as a cosynergist also has a quantifiable, positive effect. In the presence of the phosphate ester plasticizer, the reverse order is observed with marginal levels of synergy being evident (1.2 > ES > 1.0). In polyester resin formulations, ATO and ZHS exhibit similar levels of synergy when present with dibromoneopentyl diglycol with the former being superior when decabromodiphenyl ether is the flame retardant. However, in all polyamide 6 formulations, the highest levels of synergistic effectiveness are observed (ES ≥ 5.0) with ZS. Maximum values of ES correspond to a molar ratio of Sn/Br<0.3 suggesting the formation of SnBr2 and SnBr4 as the effective flame-retarding species.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Reference22 articles.
1. Cusack, P.A. ( 1991). Tin Chemicals as Flame Retardants, In: Lewin, M. and Kirshenbaum, G. (eds), Recent Advances in Flame Retardancy of Polymeric Materials, Vol. 2, pp. 75-82, Business Communications Inc, Norwalk, CT, USA.
2. Zinc stannate-coated fillers: Novel flame retardants and smoke suppressants for polymeric materials
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献