Evaluation of a new device for simultaneous measurement of heat flux and gas velocity in a diffusion flame

Author:

Donaldson Burl1,Height Jonathan1,Gill Walt1,Yilmaz Nadir2

Affiliation:

1. Fire Science and Technology, Sandia National Laboratories, Albuquerque, NM, USA

2. Department of Mechanical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA

Abstract

This article examines potential use of a new device called multi-directional heat flux and velocity probe for simultaneous measurement of heat flux and flame speed in a diffusion flame. The probe consists of a thin-wall spherical shell with internal insulation to mitigate internal convection. Both pressure and temperature distributions around the sphere are used to indicate local velocity and heat flux. The multi-directional heat flux and velocity probe appears to be a more promising device than the bidirectional velocity probe in the sense that the sphere is a regular geometry with minimum flow separation and should lead to more predictable behavior. However, an outcome of this study is that the device must be used in conjunction with a fire code computational fluid dynamics model because the boundary layer is not isothermal so that the conventional pressure coefficient for a sphere leads to erroneous results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3