Determination of the Smoke Layer Interface Height for Hot Smoke Tests in Big Halls

Author:

Chow W.K.1

Affiliation:

1. Research Centre for Fire Engineering, Department of Building Services Engineering, Area of Strength: Fire Safety Engineering, The Hong Kong Polytechnic University Hong Kong, China,

Abstract

Hot smoke tests are required to carry out in the site of tall halls in the Far East including Hong Kong and Taiwan. The objective is to evaluate the performance of smoke exhaust systems. In the field tests, it is difficult to determine the smoke layer interface height, especially in those tall halls with irregular shapes. A common practice is to measure the vertical temperature profile at distance away from the test fire. The position with sharp changes of vertical temperature is taken as the hot air layer interface. In addition, the N-percentage rule on the measured vertical temperature profile was also applied. There are arguments on determining the percentage N. This point will be studied in this article based on hot smoke test results in five atriums of height up to 33 m. In the field tests, a 2 MW methanol pool fire was approved to generate heat. Smoke guns were used to generate tracers for observing the smoke layer. A thermocouple tree was placed at distance away from the test fire. Visual observations of smoke layer would be compared with the positions giving sharp changes in vertical temperature profile. The N-percentage rule was also applied to determine the smoke layer interface height based on the measured vertical temperature profiles. Values of N varied from 10, 15, and 20%. In this way, elevation of the hot air layer interface can be determined even when a clear smoke layer is not observed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference25 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3